Промышленные фотоэлектрические установки

 Уже несколько лет небольшие фотоэлектрические системы применяются в коммунальном электро-газо и водо-снабжении, доказав свою экономичность.

В большинстве своем они имеют мощность до 1 кВт и включают в себя аккумуляторы для накопления энергии. Они выполняют множество функций: от питания сигнальных огней на опорах ЛЭП для оповещения самолетов до контроля качества воздуха. Они продемонстрировали надежность и долговечность в коммунальном хозяйстве и готовят почву для будущего внедрения более мощных систем.

Энергоснабжающие предприятия изучают возможности фотоэлементов с точки зрения увеличения генерирующей мощности и удовлетворения все возрастающих требований к экологической и производственной безопасности. Крупные солнечные электростанции, состоящие из множества фотоэлектрических батарей, могут оказаться весьма полезными для энергокомпаний. Их создание занимает меньше времени, чем строительство традиционных электростанций, так как солнечные панели легко устанавливать и соединять. Компания может строить фотоэлектрические станции там, где в них есть потребность, так как размещение фотобатарей гораздо проще, чем выбор участка для традиционной электростанции. И, в отличие от традиционных электростанций, их можно расширять по мере необходимости. Наконец, фотоэлектрические станции работают бесшумно, не потребляют ископаемого топлива и не загрязняют воздух и воду. К сожалению, фотоэлектрические станции пока еще не очень динамично входят в арсенал коммунальных сетей, что можно объяснить их особенностями. При современном методе подсчета стоимости энергии, солнечное электричество все еще значительно дороже, чем продукция традиционных электростанций. К тому же фотоэлектрические системы вырабатывают энергию только в светлое время суток, и их производительность зависит от погоды.

Поэтому при планировании энергосистемы нужно учитывать эти особенности фотоэлектрической станции, чтобы правильно вписать ее в существующую систему производства, передачи и распределения энергии. Фотоэлектрические станции, тем не менее, занимают все больше места в планах энергопроизводителей. Например, в США коммунальные предприятия изучают возможность подключения фотоэлектрических систем к энергосетям в тех местах, где они имеют большую ценность. Так, добавление фотоэлектрической системы в непосредственной близости от потребителя помогает избежать потерь энергии, связанных с передачей на большие расстояния. Следовательно, фотоэлектрическая система имеет большую ценность для компании, если она расположена возле потребителя. Их можно также устанавливать на тех участках распределительной системы, которые обслуживают районы с быстро растущим населением. В этом случае фотоэлектрические установки устраняют необходимость увеличивать протяженность линий электропередач. Установка фотоэлектрических систем возле подстанций, распределяющих энергию, может предотвратить перегрузку расположенного на них оборудования.

Фотоэлементы не похожи ни на один источник энергии, который когда-либо использовался коммунальными предприятиями. Они требуют крупных начальных вложений, зато стоимость топлива равна нулю. Постройка угольных и газовых электростанций вначале обходится дешевле (относительно их производительности), но потом они требуют постоянных расходов на закупку топлива. Цена на топливо колеблется, и неизвестно, как она будет изменяться в будущем в связи с развитием природоохранного законодательства. Цены на ископаемые виды топлива будут расти, тогда как общая стоимость фотоэлементов (да и других возобновляемых источников энергии), как ожидается, будет продолжать падать, особенно если принимать во внимание их преимущества для окружающей среды.

Основные принципы оценки потенциала, барьеров и влияния солнечной энергии


Солнечное отопление

Этот раздел посвящен, в основном, активному солнечному отоплению, т.е. системам, в которых солнечная энергия превращается в тепло при помощи солнечных коллекторов, а затем посредством жидкости-теплоносителя подается к конечному потребителю. Еще один важный вид использования энергии Солнца - это пассивное солнечное отопление, когда дома проектируются так, чтобы улавливать максимум солнечной энергии, поступающей сквозь окна и нагревающей стены, и затем использовать ее для отопления помещений.

Cолнечный потенциал
Годовое поступление солнечной энергии варьируется от 900-1000 кВт·ч/м2 на севере региона Балтийского моря до, к примеру, 1077 кВт·ч/м2 на территории Центральной Европы (Богемия) и до 1600 кВт·ч/м2 в Средиземноморском и Черноморском регионах на горизонтальной поверхности. На юге на наклонной поверхности показатель годового поступления солнечной энергии выше на 20%.

Оценка ресурса
В условиях Европы поступающая солнечная энергия в большинстве случаев превосходит энергопотребление здания. К примеру, типичный многоквартирный жилой дом в Чехии получает 1077 кВт·ч/м2, тогда как каждый его этаж потребляет примерно 150 кВт·ч/м2 для отопления и еще 25-50 кВт·ч/м2 для освещения и приготовления пищи, что в целом равняется 875 - 1000 кВт.ч/м2 для пятиэтажного дома (этажи измерены в м2 горизонтальной поверхности). Поступающей в течение года солнечной энергии в целом достаточно, но полезный ресурс ограничен колебаниями солнечной энергии и емкостью аккумулирования. Корректную оценку доли полезного солнечного тепла можно сделать с учетом разных тепловых нагрузок.

Ограничения встроенных систем обычно состоят в том, что солнечное отопление может покрыть лишь 60-80% потребности в горячей воде и 25-50% отопления. Зависит это от местоположения дома и от типа системы. В Северной Европе ограничения составляют соответственно 70% и 30% для горячего водоснабжения и отопления помещений.

Анализ и опыт применения солнечных систем центрального отопления показывают, что они могут покрывать 5% потребления без аккумулирования, 10% с 12-часовым хранением, и около 80% -- с сезонным. Эти данные основаны на системах районного отопления жилого сектора, где средние теплопотери составляют 20%. Солнечные системы отопления без аккумулирования тепла, являются, безусловно, самым дешевым решением.

Солнечное отопление может обеспечивать около 30% потребности промышленных предприятий, которые используют тепло ниже 100 оC, если потребление тепла на них является стабильным. В зависимости от времени года и температуры, солнечная энергия может обеспечить 100% потребности на сушку продукции.

Солнечный нагрев плавательных бассейнов может почти полностью обеспечить тепловую нагрузку закрытых и 100% для открытых бассейнов в летний период.

Таким образом, подсчет потенциала солнечного отопления - это, главным образом, вопрос оценки потребности в низкотемпературном тепле.

Барьеры
В большинстве своем установки солнечного нагрева хорошо разработаны, и если встречаются трудности на пути их освоения, то они вызваны скорее отсутствием определенных материалов или технологий в данном месте, чем отсутствием технологий как таковых. Следовательно, основными барьерами, помимо экономических, являются:
недостаток информации о существующих технологиях, их оптимальных решениях и интеграции в отопительные системы;
нехватка квалифицированных кадров для производства и установки.

Иногда препятствием является нехватка солнечной энергии. Что касается активных систем солнечного отопления, практически всегда можно найти такое место для установки коллектора, где будет хватать солнечного света. В случае пассивной солнечной энергии, которая, как правило, проникает сквозь обычные окна, соседство с домами или деревьями может привести к серьезному сокращению поступающей энергии.

Влияние на экономику, экологию и занятость населения

Экономика
С экономической точки зрения, применение солнечной энергии может быть как практически бесплатным, когда пассивные солнечные системы интегрируются в план дома или участка земли, так и весьма дорогостоящим, как в случае применения систем солнечного отопления с сезонным аккумулированием теплоты. Приведем ценовые показатели для солнечных отопительных систем:

Применение
Площадь коллектора, м2 Годовое производство, кВт·ч Инвестиции /на 1 м2 площади Инвестиции/ годовое производство
Горячее водоснабжение частного дома, Северная Европа
4-6
2000
1000 евро
2.5 евро/кВт·ч
Горячее водоснабжение частного дома, Южная Европа
4
2500
250 евро
0.4 евро/кВт·ч
Открытый бассейн
100
10000
10 евро
0.1 евро/кВт·ч
Районное теплоснабжение
1000
440
181 евро
0.41 евро/кВт·ч

Примечание:
Под солнечным коллектором для горячего водоснабжения дома для одной семьи в Северной Европе понимается типовая система, используемая в Скандинавских странах и в Германии (антифризовый носитель, высокий уровень изоляции, замкнутый контур).
Под системой для частного дома, расположенного в Южной Европе понимается термосифонная система, используемая в Греции. Цены в Центральной и Юго-Восточной Европе значительно ниже.
Годовой объем производства электроэнергии приводится для условий Северной Европы (кроме южноевропейской системы для частного дома).
В большинстве случаях использования систем в Северной Европе, солнечные коллекторы заменяет собой газовые или бензиновые обогреватели, КПД которых в летнее время очень низкий (часто 30-50%).
Экология
Собранное солнечными коллекторами тепло заменяет энергию, произведенную при помощи загрязняющих окружающую среду технологий. В этом состоит главный экологический эффект солнечной энергетики. Обычно солнечные коллекторы устанавливают на крышах зданий, при этом они не оказывают никакого влияния на вид и экологию данной местности. Энергия, затраченная на производство солнечного коллектора, равна энергии, которую коллектор производит в течение 1-4 лет.

Вопрос занятости
Большинство рабочих мест в этой отрасли приходится на производство и установку солнечных коллекторов. На опыте Дании, занятость оценивается в 17 человеко-лет на производство и установку 1000 м2 семейных солнечных коллекторов. Эта тысяча квадратных метров замещает 800 МВт·ч первичной энергии (полезная энергия 400 МВт·ч). При сроке эксплуатации коллектора 30 лет, 700 человек будут постоянно заняты на производстве солнечных коллекторов, способных заменить 1 ТВт·ч энергии.

Доля солнечной энергии в национальной энергетике
В принципе, потребность в тепле может быть полностью удовлетворена при помощи солнечной энергии в сочетании с сезонным аккумулированием. Поэтому для этого ресурса не существует абсолютной границы, есть лишь экономические ограничения. В Дании подсчитали, что без сезонного аккумулирования солнечная энергия может обеспечить 13 % тепловой нагрузки, в том числе коммерческое и промышленное потребление. В более солнечном климате эта доля, естественно, больше.

Фотоэлектрическая энергия

Фотоэлектрические элементы вырабатывают электричество с производительностью, изменяющейся в зависимости от уровня солнечной радиации. Фотоэлементы объединяют в модули, которые составляют основной компонент фотоэлектрических систем. Модули рассчитаны на разное напряжение, вплоть до нескольких сотен вольт. Достигают этого путем соединения фотоэлементов и модулей в серии. Для питания электроприборов переменного тока необходимо использовать инверторы.

Коэффициент полезного действия фотоэлементов рассчитывается как процентное соотношение между энергией, поступившей на фотоэлемент и электроэнергией, поступившей к потребителю. Существует отличие между теоретической, лабораторной и практической эффективностью. Важно знать разницу между ними, а для пользователей фотоэлементов, конечно, имеет значение только практический КПД.

Практический КПД фотоэлементов массового производства:
-- монокристаллический кремний: 16 - 17%;
-- поликристаллический кремний: 14 - 15%;
-- аморфный кремний: 8 - 9%.

Фотоэлектрические системы обычно подразделяют на:
1. Автономные системы, которые состоят только из фотоэлектрических панелей. Кроме того, в них могут входить регуляторы и аккумуляторы.
2. Гибридные системы, представляющие собой комбинацию фотоэлементов и дополнительных средств для производства электричества, таких как ветер, дизельное топливо или природный газ. В таких системах часто используются аккумуляторы и регуляторы меньшего размера.
3. Системы, соединенные с электросетью, фактически представляют собой небольшие электростанции, поставляющие электроэнергию в общую энергосеть.

Советы проектировщику
При проектировании фотоэлектрической установки необходимо принять во внимание целый ряд различных факторов, чтобы найти оптимальные решения. Во-первых, необходимо выяснить, сколько энергии требуется от установки. После этого рассчитывается общее суточное потребление в ампер-часах. Из общего суточного и недельного потребления выводится общий объем аккумулирования энергии. Нужно учесть, в течение скольких пасмурных дней установка должна функционировать. И наконец, нужно оценить, сколько потребуется фотоэлектрических модулей, чтобы производить достаточное количество энергии. Фотоэлектрическую установку можно также комбинировать с другими источниками энергии. Удачно сочетаются, например, небольшой ветрогенератор и фотоэлементы. Полученная энергия может сберегаться в свинцовом или никель-кадмиевом аккумуляторе.

Оценка ресурса
Доступная солнечная энергия изменяется в течение дня из-за относительного движения Солнца и в зависимости от облачности. В полдень при ясной погоде энергетическая освещенность, создаваемая Солнцем, может достигать 1000 Вт/м2, тогда как в условиях плотной облачности она может упасть до 100 Вт/м2 и ниже, даже в полдень. Количество солнечной энергии меняется вместе с углом наклона установки и ориентацией ее поверхности, снижаясь по мере удаления от южного направления.

Фотоэлементы заводского производства в продаже имеют определенную номинальную мощность, выраженную в ваттах пиковой мощности (Втп). Это показатель их максимальной мощности в стандартных условиях испытаний, когда солнечная радиация близка к своему максимальному значению в 1000 Вт/м2, а температура поверхности фотоэлемента 25 оC. На практике же фотоэлементам редко приходится работать в таких условиях. Приблизительно мощность (P) фотоэлектрической системы оценивается по формуле:

P (кВт·ч/день) = Pp (кВт) * I (кВт·ч/м2 в день) * P где:
Pp - номинальная мощность в кВт, эквивалентная КПД, умноженному на площадь в м2
I -- экспозиция солнечного излучения на поверхности, в кВт·ч/м2 в день
PR - коэффициент производительности системы.


Среднесуточное значение солнечной освещенности (I) в Европе в кВт·ч/м2 в день (наклон к югу, угол наклона к горизонту 30 градусов) приводится в таблице.

 
Южная Европа
Центральная Европа
Северная Европа
Январь
2,6
1,7
0,8
Февраль
3,9
3,2
1,5
Март
4,6
3,6
2,6
Апрель
5,9
4,7
3,4
Май
6,3
5,3
4,2
Июнь
6,9
5,9
5,0
Июль
7,5
6,0
4,4
Август
6,6
5,3
4,0
Сентябрь
5,5
4,4
3,3
Октябрь
4,5
3,3
2,1
Ноябрь
3,0
2,1
1,2
Декабрь
2,7
1,7
0,8
За год
5,0
3,9
2,8

Типичные коэффициенты производительности:
0,8 для систем, соединенных с сетью;
0,5 - 0,7 для гибридных систем;
0,2 - 0,3 для автономных систем, используемых круглый год.

Типичные характеристики системы
Автономные системы отличаются более низкой эффективностью, так как работают они при почти постоянной нагрузке круглый год, а размер их фотоэлектрических модулей рассчитывается так, чтобы они давали достаточно энергии зимой, хоть это и означает ее перепроизводство летом. Типичная профессиональная система в Европе вырабатывает в год в среднем 200-550 кВт·ч/кВтп.

У гибридных систем более высокий коэффициент производительности, так как их размер соответствует необходимой нагрузке летом, а зимой и в ненастную погоду их дополняет другая система - ветроустановка или дизель-генератор. Типичная среднегодовая выработка такой системы составляет 500-1250 кВт·ч/кВтп в зависимости от потерь, вызванных регулятором заряда и аккумулятором.

Фотоэлектрические системы, подключенные к электросети, отличает наилучший коэффициент производительности, так как весь объем произведенной энергии либо полностью используется на месте, либо поступает в сеть. Типичная среднегодовая выработка 800-1400 кВт·ч/кВтп.

Барьеры
Даже после резкого снижения цены, фотоэлементы в настоящее время стоят 5 долларов США за 1 Втп. Производство электричества стоит сегодня 0,5 - 1 доллар/кВт·ч, то есть дороже, чем от других возобновляемых источников. В будущем, по мере более широкого их применения, стоимость фотоэлементов должна уменьшиться. Несмотря на свою высокую стоимость, фотоэлектрическая энергия может оказаться дешевле других источников в отдаленных регионах, отрезанных от электросетей, или там, где производство электроэнергии другими способами (например, на дизель-генераторах) затруднено либо недопустимо по экологическим причинам (например, в горных местностях).

Влияние на такие аспекты развития региона как экономика, экология и занятость населения
В современной Европе наиболее рентабельным является применение фотоэлектрических систем в регионах отдаленных от энергосети. Применение фотоэлектрических систем будет иметь большой положительный эффект на экономическое развитие этих регионов.
Применение фотоэлектрических систем не оказывает никакого влияния на экологию. Экологические проблемы могут возникнуть в процессе производства фотоэлектрических элементов, производстве и (неправильной) утилизации аккумуляторов.
На данный момент в Европе не ожидается какого-либо существенного влияния на увеличение роста занятости населения в отрасли.

НЕКОТОРЫЕ ПРАВИЛА
На территории Центральной Европы каждый кВт·ч установленной мощности обычной фотоэлектрической системы (кристаллический кремний, кпд 12%), присоединенной к энергосети, может "производить" 1150 кВт·ч электроэнергии в год и до 300 кВт·ч электроэнергии в год в случае с децентрализованной установкой.


 
Интересная статья? Поделись ей с другими:

Добавить комментарий


Защитный код
Обновить

солнце

Эксплуатация солнечных батарей

Самодельные солнечные батареи | Воскресенье, 6 Февраля 2011

Практические испытания солнечных батарей...

Самодельная солнечная батарея

Самодельные солнечные батареи | Среда, 1 Февраля 2012

Начинаю свой проект по...

Солнечные батареи и аккумуляторы

Самодельные солнечные батареи | Воскресенье, 6 Февраля 2011

На первых спутниках Земли...

Монтаж солнечных панелей

Самодельные солнечные батареи | Суббота, 12 Февраля 2011

При монтаже, солнечные панели...

Солнечную батарею сделать своими руками

Самодельные солнечные батареи | Понедельник, 6 Февраля 2012

Солнечные батареи своими руками...

Инвертор

Самодельные солнечные батареи | Вторник, 4 Января 2011

   Инвертор превращает постоянный ток...

ветер

Ветроустановка своими руками

Самодельные ветрогенераторы | Вторник, 7 Февраля 2012

Автор: Евгений ВасильевичЯ сделал...

5-метровый самодельный ветрогенератор (Часть 4)

Самодельные ветрогенераторы | Вторник, 20 Марта 2012

Предыдущая часть здесьСхема проводки простая...

Самодельный ветрогенератор

Самодельные ветрогенераторы | Вторник, 4 Января 2011

Хочу предложить читателям интересное на...

Ветрогенератор своими руками

Самодельные ветрогенераторы | Воскресенье, 6 Февраля 2011

Ветрогенератор роторного типа. Мощностью до...

Ветроустановка 3.1м

Самодельные ветрогенераторы | Вторник, 7 Февраля 2012

Данная установка планировалась как...

Самодельный ветряк с лопастями из алюминиевой трубы

Самодельные ветрогенераторы | Вторник, 7 Февраля 2012

Автор: Бурлака Виктор Афанасьевич.Самодельный ветряк. Я...